作为一名人民老师,我们需要很强的课堂教学能力,通过教学反思能很快的发现自己的讲课缺点,教学反思我们应该怎么写呢?以下是小编收集整理的线段的垂直平分线教学反思,仅供参考,希望能够帮助到大家。
线段的垂直平分线教学反思1本节继续练习线段垂直平分线性质定理应用,但学生参与的积极性还不够高,参与的.面
还不够广,教学效果不尽如人意,吸收知识的个体差异比较大。只能使少数学生会通顺地用语言来描述,其余学生都无法过关,所以在练习时产生困难。
线段的垂直平分线教学反思2在实际生活中,经常遇到在直线上找一点,使它到某两点的距离相等的问题,一般要应用线段垂直平分线的性质来解决。
锐角三角形三条边的垂直平分线相交于三角形的内部,直角三角形三条边的垂直平分线相交于三角形斜边的中点处,钝角三角形三条边的垂直平分线相交于三角形的外部,但无论这个点在什么位置,它到这个三角形三个顶点的距离是相等的。
这节课主要是运用线段垂直平分线的性质定理和判定定理解决问题。
主要内容是证明“三角形三边的垂直平分线交于一点,并且这一点到三角形三个顶点的距离相等”;已知底边及底边上的高,用尺规作等腰三角形;用尺规过一点作已知直线的垂线。小明的方法实际上就是作以点p为中点的线段AB的垂直平分线,具体做法:以点p为圆心,以任意长为半径作弧,交直线l于点A和点B。作线段AB的垂直平分线m;直线m垂直于直线l,且经过点p。另外,也可以过点p作以点p为顶点的角平分线,也可以得到过点p且垂直于直线l的直线 ……此处隐藏8829个字……,这正是数形结合思想的渗透。
2、注重学生几何语言的训练
在学生总结出定理和逆定理后,引导学生根据文字结合图形写出它相应的几何语言,这为学生做证明题时的推理打下基础。
本节课得到的定理为:线段的垂直平分线上的点和这条线段的两个端点的距离相等。
用几何语言表示为:∵MN是AB的垂直平分线,点P为MN上的任意一点(已知)。
∴PA=PB(线段的垂直平分线上的点和这条线段的两个端点的.距离相等)
通过这个几何语言的表述又可以强调今后已知线段的垂直平分线存在,证线段垂直平分线上的点到这条线段的两个端点的距离相等时,直接用这个定理即可,不用再通过证三角形全等而得出,防止学生课后应用时走弯路。
逆命题为:和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上。
用几何语言表示为:
∵PA=PB(已知)。
∴点P在AB的垂直平分线MN上。
(和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上)
3、整堂课课堂效果较好,学生参与的积极性较高,课堂气氛较好。学生对问题的探索、研究反应较好,接受、吸收情况也比较好。通过本节课的学习,基础较好的学生不仅会使用线段的垂直平分线的定理及逆定理解决问题,而且在探索发现问题能力方面有很大的进步。
三、教后反思。
针对这一节课中出现的问题,我做出了如下的反思:首先在备课的时候,一定要抓准重难点,安排好一节课的内容,抓准一节课的时间;其次一定要体现以学生为主的原则,要讲练结合,给学生足够多的时间做练习,充分理解接受新的知识。在今后的教学中,我一定不断不改进自己的不足之处。